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Pairing and superconductivity driven by strong quasiparticle renormalization in
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We introduce and analyze a variational wave function for quasi two-dimensional κ-(ET)2 organic
salts containing strong local and nonlocal correlation effects. We find an unconventional supercon-
ducting ground state for intermediate charge carrier interaction, sandwiched between a conventional
metal at weak coupling and a spin liquid at larger coupling. Most remarkably, the excitation spec-
trum is dramatically renormalized and is found to be the driving force for the formation of the
unusual superconducting state.
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The proximity to a Mott insulating phase affects
the behavior of a correlated material in a fundamental
way[1, 2]. Since most Mott insulators are also magneti-
cally ordered, it is often not clear whether unconventional
behavior observed in nearby phases is due to the proxim-
ity to a Mott transition, to a magnetic phase transition,
or a combination of both. Ideal materials to sort this out
are obviously spin liquids, systems where the Mott insu-
lating phase is magnetically disordered. Recently, such
behavior was found in the magnetically frustrated, in-
sulating organic charge transfer salt κ-(ET)2Cu2(CN)3
by Shimizu et al.[3]. No magnetic long-range order was
found down to T ≈ 30 mK. While the low-T susceptibil-
ity is suppressed, consistent with the opening of a spin
gap, the observed power-law dependence, 1/T1 ∝ T 2, of
the NMR-spin liquid relaxation rate[3] supports gapless
(possibly nodal) excitations of the spin liquid. Under
pressure, κ-(ET)2Cu2(CN)3 becomes, like many similar
κ-(ET)2X systems[4, 5, 6], a superconductor[7].

In quasi two-dimensional κ-(ET)2X salts[4, 5, 6] dimers
of ET = bis[ethylenedithio]-tetrathiafulvalene molecules
are arranged in an anisotropic triangular lattice, with a
charge state of one hole per dimer. The insulating state
is, in most cases, antiferromagnetically ordered and sepa-
rated from a pressure induced superconducting phase by
a first order transition[8]. In the superconducting state a
number of experiments strongly support the existence of
nodes of the pairing gap[9, 10, 11, 12, 13, 14, 15, 16].
A gap with nodes was determined in spin fluctuation
theories[17, 18, 19, 20, 21]; the location of the nodes
of most of these calculations[17, 18, 19, 20] was how-
ever in disagreement with experiments[14, 15]. More im-
portantly, the absence of magnetic long range order in
κ-(ET)2Cu2(CN)3 and the rather strong first order tran-
sition to an antiferromagnet in other systems, seem to
be at odds with key assumptions of the spin fluctuation
approach.

In this paper we introduce and analyze a variational
resonating valence bond (RVB) wave function for sys-
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FIG. 1: Single particle gap, ∆0 in units of the renormalized
hopping t∗ (see text), and superconducting order parameter,
ψs, as a function of U/t. For U/t <∼ 8.5 the system is a
Fermi liquid metal. Pairing and superconductivity build up
in the intermediate coupling regime for U/t ∼ 8 − 10 in a
non-BCS fashion. While the pairing amplitude grows with
U/t, superconductivity is non-monotonic. For U/t >∼ 10, ψs

is negligible and the system becomes a spin liquid.

tems close to a Mott transition, tuned by the interaction
strength, i.e. for fixed carrier concentration but variable
pressure. Starting with a simple metal for low interac-
tion strengths, we find a dramatic renormalization of the
quasiparticle spectrum for intermediate strength of the
interaction. The system becomes a spin liquid of sin-
glets with strong but short ranged spin correlations and
a rapidly growing gap which persists as the interaction
strength is increased. We further find that supercon-
ductivity is strong only in the transition regime between
the simple metal and the spin liquid, see Fig.1. The na-
ture of the renormalized spectrum and the nodal struc-
ture in the superconducting state are a strong function
of the electronic dispersion. We claim that our proposed
wavefunction, with its ability to describe unconventional
order parameters with nodes and effects of strong cor-
relations, is a strong candidate for the description of κ-
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(ET)2Cu2(CN)3 and related materials.
We start from the single band Hubbard model

H =
∑

ij;σ

tijc
†
iσcjσ + U

∑

i

ni↑ni↓ (1)

where c†iσ is the creation operator for a hole in the bond-
ing state of a (ET)2-dimer[5, 17, 22]. The hopping
elements, tij , between dimers at sites i and j deter-
mine the bare band structure, εk = 2t (cos kx + cos ky)+
2t′ cos (kx + ky), as measured in magneto-oscillation ex-
periments in the metallic regime[6], see inset of Fig.2.
U is the Coulomb repulsion between holes on the same
dimer. Typical parameters are t ≈ 0.05 − 0.1eV, and
U ≃ 5 − 10t, whereas the ratio t′/t varies from ≃ 0.6
for X=Cu[N(CN)2 ]Br to t′/t ≃ 1.0 for the spin liquid
compound with X=Cu2(CN)3.

In systems where the Mott transition occurs due to
varying charge carrier concentration, important strong
correlations are captured by the t-J model. A great deal
of insight into this model has been gained by using a vari-
ational wave function[1, 23, 24] |ΨRVB〉 = eiSP0 |ΦBCS〉,
where P0 projects out all doubly occupied states and S
generates the unitary transformation to the t− J model
(see Refs.[23, 24, 25, 26, 27]). Here,

|ΦBCS〉 ∝

(

∑

k

ϕkc
†
k↑c

†
−k↓

)N/2

|0〉 (2)

is a BCS wave function of N particles with ϕk =

∆k/
[

ξk +
√

ξ2
k

+ ∆2
k

]

and ξk = εk −µv. The gap ∆k as

well as µv are variational parameters[23, 24, 25, 26, 27].
In the organics the Mott transition occurs at half fill-

ing via changing pressure, i.e. changing the ratio t/U .
Recently, a generalization of the t− J-model to pressure
induced Mott transitions was suggested[28]. Here we use
another approach and perform our calculation explicitly
for finite U/t. This could be achieved using a Gutzwiller
projected[29] pair wave function, |ΨGW〉 = gD |ΦBCS〉,
with D =

∑

i ni↑ni↓. Even though this wave function
treats the interaction term in Eq.1 properly, it is known
to poorly treat the kinetic energy and thus the physics of

the superexchange coupling, J = 4t2

U . A promising way
to improve this shortcoming was proposed in Ref.[30].
gD was replaced by gDhΘ with an additional variational
parameter h. Θ is the total number of doubly occupied
sites which have no empty neighbor connected by a hop-
ping element. This causes an “attraction” of doubly oc-
cupied and empty sites, that arise as intermediate steps
for the superexchange process and dramatically improves
the ground state energy[30].

The propagation of quasi-particles in a magnetically
frustrated system is likely affected by the strong, but
local spin correlations and we expect that the renormal-
ized spectrum, ε∗

k
, differs from the bare dispersion, εk.
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FIG. 2: The renormalized hopping elements along the two
diagonals (see right part of the inset) as a function of U/t. For
t′ = 0.7t, the diagonal t′∗ is strongly suppressed whereas t′′∗ is
enhanced over their bare values (horizontal lines), suggesting
a reorganization of the quasiparticle dispersion for U ∼ 8.5t.

This is a common observation of mean field or varia-
tional approaches[31] to the t−J model and was recently
demonstrated in cluster dynamic mean field calculations
of the present model[32]. Thus, we allow for a renor-
malization of the energy spectrum and use ξk = ε∗

k
− µv

in the BCS-wave function. Since |ΦBCS〉 depends only
on the ratio ξk/∆k, we cannot determine ε∗

k
or the gap

in absolute units, but, for example, in units of t∗, the
renormalization of t. t∗ itself cannot be determined.

Combining all these aspects, we propose the following
wave function for organic charge transfer salts close to
the Mott transition:

|Ψ〉 = gDhΘ |ΦBCS〉 . (3)

The matrix element E = 〈Ψ |H |Ψ〉 / 〈Ψ|Ψ〉 are evalu-
ated using the Monte Carlo approach of Ref.[24, 33] for
a 12 × 12 lattice. E is then minimized with respect to
the variational parameters h, g, µv, ∆k and ε∗

k
using a

simulated annealing algorithm. The results shown below
are mainly for t′/t = 0.7 and varying U/t, but we discuss
other t′-values as well.

Correlated Superconductor: The ground state of the
triangular lattice in the Heisenberg limit, U/t → ∞ ex-
hibits long range order[37]. From Ref.[34] we further
know that for t′/t = 0.7 and U/t <∼ 10 − 12 the model
is in a spin liquid insulating state without long range
magnetic order. We expect that such a spin liquid has
a natural tendency towards Cooper pair formation and
superconductivity[1]. We calculate the single particle
gap ∆k and compare with the actual superconducting
order parameter, ψs. Our central result is shown in
Fig.1a depicting the U dependence of the pairing am-
plitude of ∆k. Out of a large class of different symmtries
analyzed for t′ = 0.7t, the optimal form of the gap is
∆0 (cos kx − cos ky). For small U <

∼ 7t, ∆0 is negligi-
ble; it starts building up for U/t ∼ 8.5, rising sharply
and attaining a large value of ∆0/t

∗ ∼ 3. Whether the
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FIG. 3: Contour plot of |∇nk| for U = 0 (left) and for U/t = 9
(right). The strongly renormalized dispersion in the interact-
ing case generates a four-fold symmetric structure. |∇nk| is
largest along the diagonals.

pairing amplitude ∆0 is related to superconductivity is
determined by the pairing correlation function,

Fa,b (r − r
′) =

〈

Ψ
∣

∣B†
r,aBr′,b

∣

∣Ψ
〉

, (4)

with Br,a = 1
2

(cr+a,↓cr↑ − cr+a,↑cr,↓). In a superconduc-

tor, Fa,b → ±|ψs|
2

for large |r − r
′|. The sign depends

on the direction of the nearest neighbor vectors a and
b. Our results for |ψs|

2
as function of U/t are shown

in Fig.1b. The order parameter becomes rapidly large
around U ≃ 8.5t, just where ∆0 grows. For larger values
of U , superconductivity becomes weak, despite the fact
that ∆0 keeps growing. As shown in Ref.[35], a wave
function of the form in Eq.3, is unable to yield a true
insulating state and it is not clear whether the state for
U ≃ 10t is a fragile superconductor along the lines of
Ref.[36] or an insulator. In this strict sense our wave
function describes a fragile conductor rather than a spin
liquid. We believe, however, that this limitation is of mi-
nor importance as far as the distinctive features of the
superconductivity are concerned: the large value of the
gap, the very fragile superfluid stiffness and their very
different dependences on U/t. A robust superconducting
ground state only exists in the intermediate transition
regime.

Renormalization of the excitation spectrum: We find
rather remarkably that the crucial factor for the emer-
gence of the superconducting state is a qualitative change
in the excitation spectrum.

As mentioned above, we determine the optimal exci-
tation spectrum, ε∗

k
by minimizing the energy. In ad-

dition to renormalizations of existing hopping elements,
i.e. t→ t∗ and t′ → t′∗, we include hopping elements not
present in εk. Allowing for all second and third neigh-
bor hopping elements, one relevant new hopping along
the other diagonal t′′∗ emerges (see inset of Fig.2). Our
results for t′∗ and t′′∗ are shown in Fig.2. A strong renor-
malization εk → ε∗

k
sets in coincident with the rapid in-

crease of ∆0. For U >
∼ 8t, t′∗ is strongly reduced but

the additional hopping element, t′′∗ ∼ t′∗, develops. As

shown in Fig.3, nk =
〈

Ψ
∣

∣

∣
c†
kσckσ

∣

∣

∣
Ψ
〉

becomes more sym-
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FIG. 4: Spatial dependence of the spin-spin correlation func-
tion different U . For larger U magnetic correlations along the
two diagonals become indistinguishable even though the bare
hopping elements are very different. The inset shows the U/t
dependence of the nearest neighbor spin correlation.

metric than for the initial Hamiltonian and the effective
dispersion corresponds to that of a weakly frustrated sys-
tem. At the crossover, U/t ≈ 8.5, the non-local vari-
ational parameter h rapidly decreases from h <

∼ 1 to
small values, where the probability of doubly occupied
sites being near an empty site is enhanced, thereby pro-
moting superexchange physics. Setting h = 1 no gap or
renormalized dispersion occurs for U/t < 11. Our vari-
ational, T = 0, calculations are completely consistent
with the interesting effects recently found within a clus-
ter dynamical mean field theory at finite T by Parcollet
et al.[32], where for U ≈ 9t new real space components of
the self energy emerge between precisely the lattice sites
connected by t′′∗.

Magnetic Correlations: The magnetic correlations of
the spin liquid state at larger U are strong but re-
main short ranged. This can be seen in Fig.4 where
we show our results for the spin correlation function
〈

Ψ
∣

∣sα
r
sα
r+a

∣

∣Ψ
〉

along different directions of a, for U = 7t
and U = 11t, respectively. For large U , there is, in agree-
ment with the renormalized dispersion of Figs.2 and 3,
almost no difference in the magnetic correlations along
the two diagonals (essentially indistinguishable in Fig.4),
even though the bare hopping element in one direction is
zero. The state at large U resembles the short range or-
der of an unfrustrated square lattice. The key difference
is of course that the square lattice for U = 11t is deep
in the Néel ordered state, while the present model is in
a spin liquid state[34]. In the inset of Fig.4 we show the
nearest neighbor spin correlation as function of U/t.

Finally we discuss the behavior for different t′-values,
including the perfect triangular lattice at t′ = t. For
t′ > t, no new hopping element occurs, but t′∗/t∗ be-
comes much larger than its bare value. For t′ = 1.5t and
U = 12t we obtain t′∗ ≈ 7.5t∗. Again, an effective disper-
sion with weak frustration emerges; now with a tendency
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to form weakly coupled chains. At the same time, the
gap changes from d-wave to ∆k = ∆0 (cos kx + cos ky) −
∆′

0 cos(kx+ky), with ∆0 ∼ ∆′
0. This corresponds roughly

to a rotation of the nodes by π/4, as found experimentally
in organic superconductors[14, 15], however for a system
where t′ is believed to be slightly smaller than t. For
t′ = t, relevant for κ-(ET)2Cu2(CN)3, a gap only occurs
if we allow for a renormalization of the spectrum. Then,
one of the three bare hopping elements on the triangular
lattice is spontaneously reduced compared to the other
two. A gap with equal size and opposite sign forms along
those two nearest neighbor bonds with the larger effective
hopping. This demonstrate how crucial the renormaliza-
tion of the spectrum for pairing and supercondictivity
is. It also shows that the physics of the triangular lat-
tice at half filling but intermediate U is much richer than
the behavior at weak coupling or in the strong coupling,
Heisenberg limit.

In summary, we have proposed a wave function for sys-
tems close to a pressure tuned Mott transition and an-
alyzed spin liquid formation and pairing in the ground
state of the Hubbard model on an anisotropic trian-
gular lattice. This geometry is relevant for quasi two-
dimensional κ-(ET)2X organic superconductors. In the
κ-(ET)2Cu2(CN)3 member of this family, genuine spin
liquid behavior was recently observed[3]. As a function
of increasing correlation strength, corresponding to de-
creasing pressure, we find a rapid transitions between a
weak coupling, simple metal regime and a strongly cou-
pled spin liquid region with a number of interesting new
properties, most remarkably a complete reorganization
of the quasiparticle spectrum. The latter occurs in and
close to the spin liquid regime and might be hard to ob-
serve via magnetooscillation experiments, but should af-
fect optical or Raman experiments. The large gap of the
spin liquid state has nodes, consistent with the observa-
tion of gapless modes in the low-T spin lattice relaxation
rate[3]. Superconductivity emerges in the spin liquid -
metal crossover and is expected to become weak for larger
pressure. The renormalized dispersion of the theory is ei-
ther that of a square lattice or of weakly coupled chains,
depending on the ratio t′/t of the hopping elements.
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